Infinite class field towers of number fields of prime power discriminant

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite Hilbert Class Field Towers over Cyclotomic Fields

Weuse a result of Y. Furuta to show that for almost all positive integers m, the cyclotomic field (exp(2π i/m)) has an infinite Hilbert p-class field tower with high rankGalois groups at each step, simultaneously for all primes p of size up to about (log logm)1+o(1). We also use a recent result of B. Schmidt to show that for infinitely many m there is an infinite Hilbert p-class field tower ove...

متن کامل

On 2-class field towers of imaginary quadratic number fields

For a number field k, let k1 denote its Hilbert 2-class field, and put k2 = (k1)1. We will determine all imaginary quadratic number fields k such that G = Gal(k2/k) is abelian or metacyclic, and we will give G in terms of generators and relations.

متن کامل

Tamely Ramified Towers and Discriminant Bounds for Number Fields

The root discriminant of a number field of degree n is the nth root of the absolute value of its discriminant. Let R2m be the minimal root discriminant for totally complex number fields of degree 2m, and put α0 = lim infmR2m. One knows that α0 ≥ 4πeγ ≈ 22.3, and, assuming the Generalized Riemann Hypothesis, α0 ≥ 8πeγ ≈ 44.7. It is of great interest to know if the latter bound is sharp. In 1978,...

متن کامل

Tamely Ramified Towers and Discriminant Bounds for Number Fields-II

The root discriminant of a number field of degree n is the nth root of the absolute value of its discriminant. Let R0(2m) be the minimal root discriminant for totally complex number fields of degree 2m, and put α0 = lim infmR0(2m). Define R1(m) to be the minimal root discriminant of totally real number fields of degree m and put α1 = lim infmR1(m). Assuming the Generalized Riemann Hypothesis, α...

متن کامل

On 2-class Field Towers of Some Imaginary Quadratic Number Fields

We construct an infinite family of imaginary quadratic number fields with 2-class groups of type (2, 2, 2) whose Hilbert 2-class fields are finite.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2020

ISSN: 0001-8708

DOI: 10.1016/j.aim.2020.107318